

Today's Focus

- Principles of toxicology/risk assessment
- Approaches to scientific study interpretation
- Causation vs association
- Regulatory frameworks

3

DoseTHE KEY CONCEPT in Toxicology

Father of Modern Toxicology

Paracelsus-1564

"All things are poisonous, only the dose makes it non-poisonous."

All chemicals—synthetic or natural—have the capacity to be toxic

Risk

The likelihood of injury or disease resulting from exposure to a potential hazard

Evaluation of risk embodies all the basic concepts of toxicology

7

Risk Assessment Paradigm

- Hazard identification
- Dose-response
- Exposure assessment
- Risk characterization

Hazard Identification

- Every chemical has a toxicological profile
- Chemicals are not capable of causing everything
- Benzene causes leukemia, not lung cancer
- Thalidomide is a teratogen, not a neurotoxicant

q

Naturally Occurring Mutagens and Carcinogens in Foods

- Aflatoxin (nuts) mutagen/rodent and human carcinogen
- Benzene (butter, coffee, roast beef) rodent carcinogen
- Coumarin (cinnamon) rodent carcinogen
- Ethyl alcohol (bread, red/white wine) rodent/human carcinogen
- Furan and derivatives (onions, celery, mushrooms) mutagens
- Heterocyclic amines (roast beef, turkey) mutagens, rodent
 carcinogens
- D-limonene (black pepper, mangoes) rodent carcinogen
- Psoralens (celery, parsley) mutagens; rodent/human carcinogens
 Quercitin glycosides (apples, tea, tomatoes) mutagens/rodent carcinogens
- Dose levels/exposures to humans typically do not reach those required to elicit toxicological effects in laboratory animals

13

International Agency for Research on Cancer – List 1 Known Human Carcinogens

- Alcoholic beverages
- Mineral oils
- Outdoor air pollution
- Painters (workplace exposures)
- Processed meat
- IARC uses hazard only exposure not considered as is done by EPA

Current Health Concerns

- Glyphosate
- Bisphenol A
- PFAS compounds
- Pharmaceuticals in the environment
- Vaccines (autism)
- Heavy metals, PCBs, dioxins, asbestos

15

Chemical X in the Environment – How do we Evaluate Health Risk

- Toxicological Profile animal studies
- Epidemiological evidence
- Exposure to humans routes/amount
- Metabolism/detoxification
- Mode of action relevance to humans

Evaluating a Scientific Study

- Are the study data accessible?
- Peer-reviewed publication
- Sound methodology (GLP)
- Do conclusions reflect the data
- Reproducibility/verification

17

The Importance of Context

- Evidence in vitro, animal, human
- Experimental doses vs. human exposure
- Relevant route of exposure?
- Relevant toxicological mechanism?

Saccharin – Relevance for Humans?

- Bladder cancer in male rats high doses
- FDA urges ban
- Congress requires warning labels
- However...
- Human evidence fails to link saccharin and cancer
- Rat-specific mechanism demonstrated,
 one not relevant to humans

19

Scientific Weight of Evidence

- Considers all available data (+ and -)
- Human, animal, in vitro, in silico evidence
- Consistency in reporting
- Human exposure levels
- Exposures relative to regulatory limits

Causation

- Not the same as association
- Associations are the norm
- Separating fact from speculation
- Causation based on successfully meeting specified criteria

21

Demonstrated Causal Effects

- Lung cancer (tobacco smoke)
- Skin cancer (excessive uv rays)
- AIDS (virus)
- Heart disease (diet, genetics)

Linkage between risk factor and effect

Love Canal (1978)

- Odor complaints from landfill
- Unsubstantiated health claims; EPA reports chromosome damage
- Media frenzy; 2500 residents relocated \$30 million
- EPA studies determined to be flawed; NYDOH, CDC, AMA, and NRC could not demonstrate abnormal health trends
- Causation not demonstrated
- Spurred the birth of Superfund

23

Remembering Regulations

- Regulation by EPA, FDA, USDA
- Extensive toxicological testing
- Risk assessments performed
- Safety factors for inter/intraspecies differences and extra factor for women/children (pesticides)
- Significant margins of exposure/safety

Safety Embedded in Regulation

- Bisphenol A (BPA):
 - Acceptable chronic daily exposure is 0.5 mg/kg/day
 - Includes a 1000-fold MOE (safety factor) below the LOEL in animal studies
- PBDE (BDE-99) flame retardant:
 - Acceptable chronic daily exposure is 0.0001 mg/kg/day
 - Includes a 3000-fold MOE (safety factor)
 - Based on study employing single oral doses of pure material by gavage

25

PFAS

- Thousands of compounds little toxicity, exposure, risk information
- Top priority for EPA
- Traditional approaches for toxicity evaluation along with NAMs
- Animal studies indicate reproductive, developmental, liver, kidney, immune endpoints
- Epidemiology studies increased cholesterol with limited findings for thyroid, birth weights, immune effects
- EPA research focused on high-throughput assays for a range of endpoints and then targeted in vivo studies based on screening results, exposure, prioritization
- https://www.epa.gov/pfas

PFAS – EPA Research Program

- Environ Health Perspect. 2019 Jan;127(1):14501. doi: 10.1289/EHP4555.
- A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing.
- Patlewicz G¹, Richard AM¹, Williams AJ¹, Grulke CM¹, Sams R¹, Lambert J², Noyes PD³, DeVito MJ⁴, Hines RN⁵, Strynar M⁶, Guiseppi-Elie A⁶, Thomas RS¹.
- ORD National Center for Computational Toxicology

27

Advancements in Toxicology and Risk Assessment

- Problem formulation
- 3R Principles New approach methods
- Genomics
- Mode of action research
- Refined exposure
- Modeling/Monitoring/Biomonitoring

Summary

- Omnipresent environmental and health concerns that demand input from science
- Seek objective, verifiable data
- Risk = Hazard + Exposure
- Always consider human context/exposure
- Regulatory limits include significant MOEs